Advertisements
Advertisements
प्रश्न
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
उत्तर
Given A + B + C = 180°
⇒ `("A" + "" + "C")/2` = 90°
So `tan(("A" + "B")/2) = tan(90^circ - "C"/2) = cot "C"/2`
(i.e) `(tan "A"/2 + tan "B"/2)/(1 - tan "A"/2 tan "B"/2) = cot "C"/2 = 1/(tan "C"/2)`
⇒ `(tan "A"/2 + tan "B"/2)tan "C"/2 = 1 - tan "A"/2 tan "B"/2`
(i.e) `tan "A"/2 tan "C"/2 + tan "B"/2 tan "C"/2 = 1 - tan "A"/2 tan "B"/2`
(i.e) `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
APPEARS IN
संबंधित प्रश्न
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find the value of sin 105°
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 4x cos 2x
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is