Advertisements
Advertisements
प्रश्न
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
उत्तर
`32sqrt(3)[sin pi/48 xx cos pi/48] = 16sqrt(3)[2sin pi/48 cos pi/48]`
= `16sqrt(3) sin pi/24((2pi)/48 = pi/24)`
Now `16sqrt(3)[sin pi/24 xx cos pi/24]`
= `8sqrt(3)[2 sin pi/24 cos pi/24]`
= `8sqrt(3)[sin (2pi)/24]`
= `8sqrt(3) sin pi/12`
Now `8sqrt(3)[sin pi/12 cos pi/12]`
= `4sqrt(3)[2 sin pi/12 cos pi/12]`
= `4sqrt(3)[sin (2pi)/12]`
= `4sqrt(3)(sin pi/6)`
Now `4sqrt(3) sin pi/6 cos pi/6 = 2sqrt(3)[2sin pi/6 cos pi/6]`
`2sqrt(3)[sin (2pi)/6] = 2sqrt(3) sin pi/3`
= `2sqrt(3) xx sqrt(3)/2`
= 3
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin (– 1110°)
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find the value of tan `(7pi)/12`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
sin 5θ sin 4θ
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to