Advertisements
Advertisements
प्रश्न
Find the value of tan `(7pi)/12`
उत्तर
tan `(7pi)/12 = 7 xx 180/12`
= 7 × 15°
= 105°
tan(105°) = tan(90° + 15°)
= – cot 15°
= `- 1/tan15^circ`
= `- 1/(tan(45^circ - 30^circ))`
= `- 1/((tan45^circ - tan30^circ)/(1 + tan45^circ* tan30^circ))`
= `- (1 + tan45^circ* tan30^circ)/(tan45^circ - tan30^circ)`
= `- (1 + (1) * (1/sqrt(3)))/(1 - 1/sqrt(3))`
= `- ((sqrt(3)+ 1)/sqrt(3))/((sqrt(3) - 1)/sqrt(3))`
= `- (sqrt(3) + 1)/(sqrt(3) - 1)`
= `- (sqrt(3) + 1)/(sqrt(3) - 1) xx - (sqrt(3) + 1)/(sqrt(3) + 1)`
= `- ((sqrt(3) + 1)^2)/((sqrt(3))^2 - 1^2)`
= `- ((3 + 2sqrt(3) + 1))/(3 - 1)`
tan(105°) = `- (4 + 2sqrt(3))/2`
= `- (2 + sqrt(3))`
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of `sin (-(11pi)/3)`
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Prove that cos(π + θ) = − cos θ
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
cos 5θ cos 2θ
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`