Advertisements
Advertisements
प्रश्न
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
उत्तर
1 + tan 44° = 1 + tan(45° – 1°)
= ` 1 + (tan 45^circ - tan 1^circ)/(1 - tan 45^circ tan 1^circ)`
= `1 + (1 - tan 1^circ)/(1 + tan 1^circ)`
= `(1 + tan 1^circ + 1 - tan 1^circ)/(1 - 1 tan 1^circ)`
= `2/(1 - 1 tan 1^circ)`
(1 + tan 1°)(1 + tan 44°) = 2
Similarly (1 + tan 2°)(1 + tan 43°) = 2
(1 + tan 3°)(1 + tan 42°) = 2
(1 + tan 22°)(1 + tan 23°) = 2
= (1 + tan 1°)(1 + tan 2°) … (1 + tan 44°)
= 2 × 2 × … 22 times
It is a multiple of 4.
APPEARS IN
संबंधित प्रश्न
Find the values of `tan ((19pi)/3)`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Find the value of cos 105°.
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Express the following as a sum or difference
cos 5θ cos 2θ
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =