Advertisements
Advertisements
प्रश्न
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
उत्तर
Now A + B + C = 180°
So B + C = 180° – A
sin(B + C – A) = sin(180° – A – A)
= sin(180° – 2A) = sin 2A
Now L.H.S = sin 2A + sin 2B + sin 2C
= 4 sin A sin B sin C ......[From (i)]
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of `tan ((19pi)/3)`
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Show that tan 75° + cot 75° = 4
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`