Advertisements
Advertisements
प्रश्न
Show that tan 75° + cot 75° = 4
उत्तर
tan 75° = tan(45° + 30°)
= `(tan45^circ + tan30^circ)/(1 - tan45^circ tan30^circ)`
= `(1 + 1/sqrt(3))/(1 - 1/sqrt(3))`
= `((sqrt(3) + 1)/sqrt(3))/((sqrt(3) - 1)/sqrt(3))`
= `(sqrt(3) + 1)/(sqrt(3) - 1)`
cot 75° = `1/tan75^circ`
= `(sqrt(3) - 1)/(sqrt(3) + 1)`
So, L.H.S = tan 75° + cot 75°
= `(sqrt(3) + 1)/(sqrt(3) - 1) + (sqrt(3) - 1)/(sqrt(3) + 1)`
= `((sqrt(3) + 1)^2 + (sqrt(3) - 1)^2)/((sqrt(3) - 1)(sqrt(3) + 1)`
= `(3 + 1 + 2sqrt(3) + 3 + 1 - 2sqrt(3))/(sqrt(3)^2 - 1^2)`
= `8/(3 - 1)`
= `8/2`
= 4
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of tan(1050°)
Find the values of `sin (-(11pi)/3)`
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`