Advertisements
Advertisements
प्रश्न
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
उत्तर
(cos A + cos B) − cos C = `2 cos ("A" + "B")/2 cos ("A" - "B")/2- [1 - 2 sin^2 "C"/2]`
Hint: `[cos ("A" + "B")/2 = sin "C"/2]`
= `2sin "C"/2 cos ("A" - "B")/2 - 1 + 2sin^2 "C"/2`
= `- 1 + 2sin "C"/2[cos ("A" - "B")/2 + sin "C"/2]`
= `- 1 + 2 sin "C"/2[cos ("A" - "B")/2 + cos ("A" + "B")/2]`
= `- 1 + 2sin "C"/2[2cos (2"A")/4 + cos (2"B")/4]`
= `- 1 + 2sin "C"/2[2cos "A"/2 cos "B"/2]`
= `- 1 + 4 cos "A"/2 cos "B"/2 sin "C"/2`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find the value of sin 105°
Find the value of tan `(7pi)/12`
Prove that sin(π + θ) = − sin θ.
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Express the following as a sum or difference
sin 4x cos 2x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is