Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
उत्तर
We know that cos2θ + sin2θ = 1
`cos^2theta + (- 2/3)^2` = 1
`cos^2theta + 4/9` = 1
cos2θ = `1 - 4/9`
cos2θ = `(9 - 4)/9 = 5/9`
cos θ = `+- sqrt(5)/3`
Since θ lies in the fourth quadrant cos θ is positive.
cos θ = `sqrt(5)/3`
sin θ = `- 2/3`, cosec θ = `1/sintheta = - 3/2`
cos θ = `sqrt(5)/3`, sec θ = `1/costheta = 3/sqrt(5)`
tan θ = `sintheta/costheta = (-2/3)/(sqrt(5)/3) = - 2/sqrt(5)`
cot θ = `1/tantheta = - sqrt(5)/2`
APPEARS IN
संबंधित प्रश्न
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find the value of cos 105°.
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
cos 5θ cos 2θ
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to