Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
उत्तर
We know that cos2θ + sin2θ = 1
`(2/3)^2 + sin^2theta` = 1
`4/9 + sin^2theta` = 1
sin2θ = `1 - 4/9`
sin2θ = `(9 - 4)/9 = 5/9`
sin θ = `+- sqrt(5)/3`
Since θ lies in the I quadrant all trigonometric functions are positive.
sin θ = `sqrt(5)/3`, cosec θ = `1/sintheta = 3/sqrt(5)`
cos θ = `2/3`, sec θ = `1/costheta = 3/2`
tan θ = `sintheta/costheta = (sqrt(5)/3)/(2/3) = sqrt(5)/2`
cot θ = `costheta/sintheta = (2/3)/(sqrt(5)/3) = 2/sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of cos 105°.
Find a quadratic equation whose roots are sin 15° and cos 15°
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a product
sin 50° + sin 40°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x