Advertisements
Advertisements
प्रश्न
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
उत्तर
cos θ = `1/2 ("a" + 1/"a")`
cos 3θ = 4 cos3θ – 3 cos θ
= `4[1/2("a" + 1/"a")]^3 - 3[1/2("a" + 1/"a")]`
= `4 xx 1/8("a" + 1/"a")^3 - 3/2("a" + 1/"a")`
= `1/2("a" + 1/"a")^3 - 3/2("a" + 1/"a")`
= `1/2["a"^3 + 3"a"^2(1/"a") + 3"a"(1/"a")^2 + 1/"a"^3] - 3/2(a" + 1/"a")`
= `1/2["a"^3 + 3"a" + 3/"a" + 1/"a"^3] - 3/2"a" - 3/(2"a")`
= `1/2 "a"^3 + 3/2"a" + 3/(2"a") + 1/(2"a"^3) - 3/2"a" - 3/(2"a")`
cos 3θ = `1/2"a"^3 + 1/(2"a"^3)`
= `1/2("a"^3 + 1/"a"^3)`
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of cos(300°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Show that tan 75° + cot 75° = 4
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a product
cos 35° – cos 75°
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =