Advertisements
Advertisements
प्रश्न
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
उत्तर
Taking A + B = X and C = Y
We get cos(X + Y) = cos X cos Y – sin X sin Y
(i.e) cos(A + B + C) = cos(A + B) cos C – sin(A + B) sin C
= (cos A cos B – sin A sin B) cos C – [sin A cos B + cos A sin B] sin C
cos(A + B + C) = cos A cos B cos C – sin A sin B cos C – sin A cos B sin C – cos A sin B sin C
If (A + B + C) = `π/2` then cos(A + B + C) = 0
⇒ cos A cos B cos C – sin A sin B cos C – sin A cos B sin C – cos A sin B sin C = 0
⇒ cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin
C sin A cos B
APPEARS IN
संबंधित प्रश्न
Find the values of cot(660°)
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of cos 105°.
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that sin(π + θ) = − sin θ.
Find a quadratic equation whose roots are sin 15° and cos 15°
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =