Advertisements
Advertisements
प्रश्न
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
उत्तर
Let x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` = k (say)
`"k"/x` = cos θ
`"k"/y = cos (theta + (2pi)/3)`
`"k"/z = cos (theta + (4pi)/3)`
`"k"/x + "k"/y + "k"/z = cos theta + cos(theta + (2pi)/3) + cos(theta + (4pi)/3)`
`"k"/x + "k"/y + "k"/z` = 0
`"k"[(yz + xz + xy)/(xyz)]` = 0
⇒ xy + yz + zx = 0
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a product
cos 35° – cos 75°
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =