Advertisements
Advertisements
प्रश्न
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
उत्तर
Taking x = tan A, y = tan B and z = tan C
`(2x)/(1 - x^2) = (2tan"A")/(1 - tan^2"A")`
= tan 2A
Similarly, `(2y)/(1 - y^2) = tan 2"B"` and `(2z)/(1 - z^2)` = tan 2C
Given x + y + x = xyz
(i.e) we are given tan A + tan B + tan C = tan A tan B tan C
⇒ A+B+C = 180°
⇒ A + B = 180° – C
Multiply 2 on both sides
⇒ 2A + 2B = 360° – 2C
2(A + B) =360° – 2C
⇒ tan(2A + 2B) = tan(360° – 2C)
= – tan 2C
(i.e) `(tan 2"A" + tan 2"B")/(1 - tan 2"A" tan 2"B")` = – tan 2C
⇒ tan 2A + tan 2B = – tan 2C [1 – tan 2A tan 2B]
⇒ tan 2A + tan 2B = – tan 2C + tan 2A tan 2B tan 2C
⇒ tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
(i.e.) `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) xx (2y)/(1 - y^2) xx (2z)/(1 - z^2)`
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of `tan ((19pi)/3)`
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of sin 105°
Find the value of tan `(7pi)/12`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin 75° – sin 15° = cos 105° + cos 15°
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
2 sin 10θ cos 2θ
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1