Advertisements
Advertisements
प्रश्न
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
उत्तर
Now sin(s – A) sin(s – B) = `1/2 {cos[("s" - "A") - ("s" - "B")] - cos[("s" - "A") + ("s" - "B")]}`
= `1/2cos("s" - "A" - "s" + "B") - cos[2"s" - ("A" + "B")]`
= `1/2 {cos("A" - "B) - cos"C"}` .....[∴ cos(A – B) = cos(B – A)]
Again sin s sin s – C = `1/2[cos"C" - cos("A" + "B")`
So, L.H.S = `1/2 {cos("A" - "B") - cos"C" + cos"C" - cos("A" + "B")}`
= `1/2 [cos("A" - "B") - cos("A" + "B")`
= `1/2 [2sin"A" sin"B"]`
= sin A sin B
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Prove that sin(π + θ) = − sin θ.
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a sum or difference
sin 5θ sin 4θ
Express the following as a product
cos 65° + cos 15°
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to