Advertisements
Advertisements
प्रश्न
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
उत्तर
L.H.S (1 + sec 2θ) = `1 + 1/(cos2theta) + (cos 2theta + 1)/(cos 2theta)`
= `(2cos^2theta)/(cos 2theta)`
(1 + sec 4θ) = `1 + 1/(cos 4theta)`
= `(cos 4theta + 1)/(cos 4theta)`
= `(2 cos^2 (2theta))/(cos 4theta)`
(1 + sec 2nθ) = `1 + 1/(2^"n" theta)`
= `(cos 2^"n" theta + 1)/(2^"n" theta)`
= `(2 cos^2 2^("n" - 1) theta)/(cos 2^"n" theta)`
(1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ)
= `(2^"n" cos^2 theta)/(cos 2theta) * (cos^2 2theta)/(cos 4 theta) ... (cos^2 2^("n" - 1) theta)/(cos 2^"n" theta)`
= `(2^"n" cos theta)/(cos 2^"n" theta) {cos theta* cos 2theta ... cos 2^("n" - 1) theta}`
= `(2^"n" costheta{sin 2^"n"theta})/(2^"n" sintheta cos 2^"n" theta)`
= tan 2nθ . cosθ
APPEARS IN
संबंधित प्रश्न
Find the values of tan(1050°)
Find the values of `tan ((19pi)/3)`
Find the values of `sin (-(11pi)/3)`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of tan `(7pi)/12`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a product
cos 35° – cos 75°
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to