Advertisements
Advertisements
प्रश्न
Express the following as a sum or difference
sin 35° cos 28°
उत्तर
sin 35° cos 28°
We know
sin A cos B = `1/2`[sin (A + B) + sin (A – B)]
Take A = 35° and B = 28°
sin 35°cos 28° = `1/2`[sin(35° + 28°) + sin(35° – 28°)]
sin 35°cos 28° = `1/2`[sin 63° + sin 7°]
APPEARS IN
संबंधित प्रश्न
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Find the value of sin 105°
Prove that cos(π + θ) = − cos θ
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
sin 75° sin 35°
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1