Advertisements
Advertisements
प्रश्न
Find a quadratic equation whose roots are sin 15° and cos 15°
उत्तर
sin 15° = sin(45° – 30°)
= sin 45°. cos 30° – cos 45°. sin 30°
= `1/sqrt(2) * sqrt(3)/2 - 1/sqrt(2) * 1/2`
sin 15° = `1/(2sqrt(2)) (sqrt(3) - 1)` ......(1)
cos 15° = cos(45° – 30°)
= cos 45° . cos 30° + sin 45° . sin 30°
= `1/sqrt(2) * sqrt(3)/2 + 1/sqrt(2) * 1/2`
sin 15° = `1/(2sqrt(2)) (sqrt(3) + 1)` ......(2)
The quadratic whose roots cos 15° and sin 15° is
x2 – (cos 15° + sin 15°)x + (cos 15°) (sin 15°) = 0 ......(3)
cos 15° + sin 15° = `1/(2sqrt(2)) (sqrt(3) + 1) + 1/(2sqrt(2)) (sqrt(3) - 1)`
= `1/(2sqrt(2)) (sqrt(3) + 1 + sqrt(3) - 1)`
= `(2sqrt(3))/(2sqrt(2))`
= `sqrt(3)/sqrt(2)`
= `sqrt(3)/sqrt(2) xx sqrt(2)/sqrt(2)`
= `sqrt(6)/2`
(cos 15°) (sin 15°) = `1/(2sqrt(2)) (sqrt(3) + 1) * 1/(2sqrt(2)) (sqrt(3) - 1)`
= `1/(4(2)) * (3 - 1)`
= `2/8`
= `1/4`
Substituting in equation (3) we have
`x^2 - sqrt(6)/2x + 1/4` = 0
`4x^2 - 2sqrt(6)x + 1` = 0
APPEARS IN
संबंधित प्रश्न
Find the values of cos(300°)
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Prove that sin(π + θ) = − sin θ.
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that sin 105° + cos 105° = cos 45°
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Express the following as a product
cos 35° – cos 75°
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =