हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Find a quadratic equation whose roots are sin 15° and cos 15° - Mathematics

Advertisements
Advertisements

प्रश्न

Find a quadratic equation whose roots are sin 15° and cos 15°

योग

उत्तर

sin 15° = sin(45° – 30°)
= sin 45°. cos 30° – cos 45°. sin 30°

= `1/sqrt(2) * sqrt(3)/2 - 1/sqrt(2) * 1/2`

sin 15° = `1/(2sqrt(2)) (sqrt(3) - 1)`  ......(1)

cos 15° = cos(45° – 30°)
= cos 45° . cos 30° + sin 45° . sin 30°

= `1/sqrt(2) * sqrt(3)/2 + 1/sqrt(2) * 1/2`

sin 15° = `1/(2sqrt(2)) (sqrt(3) + 1)`  ......(2)

The quadratic whose roots cos 15° and sin 15° is
x2 – (cos 15° + sin 15°)x + (cos 15°) (sin 15°) = 0  ......(3)

cos 15° + sin 15° = `1/(2sqrt(2)) (sqrt(3) + 1) + 1/(2sqrt(2)) (sqrt(3) - 1)`

= `1/(2sqrt(2)) (sqrt(3) + 1 + sqrt(3) - 1)`

= `(2sqrt(3))/(2sqrt(2))`

= `sqrt(3)/sqrt(2)`

= `sqrt(3)/sqrt(2) xx sqrt(2)/sqrt(2)`

= `sqrt(6)/2`

(cos 15°) (sin 15°) = `1/(2sqrt(2)) (sqrt(3) + 1) * 1/(2sqrt(2)) (sqrt(3) - 1)`

= `1/(4(2)) * (3 - 1)`

= `2/8`

= `1/4`
Substituting in equation (3) we have

`x^2 - sqrt(6)/2x + 1/4` = 0

`4x^2 - 2sqrt(6)x + 1` = 0

shaalaa.com
Trigonometric Functions and Their Properties
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - Exercise 3.4 [पृष्ठ १०९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 3 Trigonometry
Exercise 3.4 | Q 7 | पृष्ठ १०९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×