Advertisements
Advertisements
Question
Find a quadratic equation whose roots are sin 15° and cos 15°
Solution
sin 15° = sin(45° – 30°)
= sin 45°. cos 30° – cos 45°. sin 30°
= `1/sqrt(2) * sqrt(3)/2 - 1/sqrt(2) * 1/2`
sin 15° = `1/(2sqrt(2)) (sqrt(3) - 1)` ......(1)
cos 15° = cos(45° – 30°)
= cos 45° . cos 30° + sin 45° . sin 30°
= `1/sqrt(2) * sqrt(3)/2 + 1/sqrt(2) * 1/2`
sin 15° = `1/(2sqrt(2)) (sqrt(3) + 1)` ......(2)
The quadratic whose roots cos 15° and sin 15° is
x2 – (cos 15° + sin 15°)x + (cos 15°) (sin 15°) = 0 ......(3)
cos 15° + sin 15° = `1/(2sqrt(2)) (sqrt(3) + 1) + 1/(2sqrt(2)) (sqrt(3) - 1)`
= `1/(2sqrt(2)) (sqrt(3) + 1 + sqrt(3) - 1)`
= `(2sqrt(3))/(2sqrt(2))`
= `sqrt(3)/sqrt(2)`
= `sqrt(3)/sqrt(2) xx sqrt(2)/sqrt(2)`
= `sqrt(6)/2`
(cos 15°) (sin 15°) = `1/(2sqrt(2)) (sqrt(3) + 1) * 1/(2sqrt(2)) (sqrt(3) - 1)`
= `1/(4(2)) * (3 - 1)`
= `2/8`
= `1/4`
Substituting in equation (3) we have
`x^2 - sqrt(6)/2x + 1/4` = 0
`4x^2 - 2sqrt(6)x + 1` = 0
APPEARS IN
RELATED QUESTIONS
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Prove that sin(π + θ) = − sin θ.
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
sin 75° sin 35°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =