Advertisements
Advertisements
Question
Express the following as a product
sin 75° sin 35°
Solution
We know sin C – sin D = `2 cos ("C" + "D")/2 * sin ("C" - "D")/2`
Take C = 75°, D = 35°
sin 75° – sin 35° = `2cos((75^circ + 35^circ)/2) * sin((75^circ - 35^circ)/2)`
sin 75° – sin 35° = `2cos(110^circ/2) * sin(40^circ/2)`
sin 75° – sin 35° = 2 cos 55° sin 20°
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
Find the values of cos(300°)
Find the values of `tan ((19pi)/3)`
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =