Advertisements
Advertisements
Question
Find the values of sin (– 1110°)
Solution
sin(– 1110°) = – sin(1110°)
= – sin(360° × 3 + 30°)
= – sin 30°
= `-1/2`
APPEARS IN
RELATED QUESTIONS
Find the values of cot(660°)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of sin 105°
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a product
sin 75° sin 35°
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that `sin theta/2 sin (7theta)/2 + sin (3theta)/2 sin (11theta)/2` = sin 2θ sin 5θ
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =