Advertisements
Advertisements
Question
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Solution
θ + Φ = α, tan θ = k tan Φ
k = `tantheta/tanphi`
`("k" - 1)/("k" + 1) = (tan theta/tan phi - 1)/(tan theta/tan phi + 1)`
= `(tan theta - tan phi)/(tan theta + tan phi)`
= `(sin theta/cos theta - sin phi/cos phi)/(sintheta/costheta + sin phi/cos phi)`
= `(sintheta cosphi - costheta sinphi)/(sintheta cosphi + costheta sin phi)`
`("k" - 1)/("k" + 1) = (sin(theta - phi))/(sin(theta + phi))`
= `(sin(theta - phi))/sin alpha`
`sin (theta - phi) = ("k" - 1)/("k" + 1) sin alpha`
APPEARS IN
RELATED QUESTIONS
Find the values of sin(480°)
Find the values of cos(300°)
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of sin 105°
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a product
cos 65° + cos 15°
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to