Advertisements
Advertisements
Question
Express the following as a product
cos 65° + cos 15°
Solution
We know sin C – sin D = `2 cos ("C" + "D")/2 * cos ("C" - "D")/2`
Take C = 65°, D = 15°
cos 65° + cos 15° = `2cos((65^circ + 15^circ)/2) * cos((65^circ - 15^circ)/2)`
cos 65° + cos 15° = `2cos(80^circ/2) * cos(50^circ/2)`
cos 65° + cos 15° = 2 cos 40° . cos 25°
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of sin 105°
Prove that cos(π + θ) = − cos θ
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Show that tan 75° + cot 75° = 4
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is