Advertisements
Advertisements
Question
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Solution
cos5θ = cos(2θ + 3θ)
= cos 2θ cos 3θ – sin 2θ sin 3θ
= (2 cos2θ – 1)(4 cos3θ – 3 cos θ) – 2 sin θ cos θ(3 sin θ – 4 sin3θ)
= 8cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 sin2θ cos θ + 8 cos θ sin4θ
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6(1 – cos2θ) cos θ + 8 cos θ(1 – cos2θ)2
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 cos θ + 6 cos3θ + 8 cos 0(1+ cos4θ – 2 cos2θ)
= 8 cos5θ – 6 cos3θ – 4 cos3θ + 3 cos θ – 6 cos θ + 6 cos3θ + 8 cos θ + 8 cos5θ – 16 cos3θ
= 16 cos5θ – 20 cos3θ + 5 cos θ
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of `sin (-(11pi)/3)`
Prove that sin(π + θ) = − sin θ.
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a product
sin 50° + sin 40°
Express the following as a product
cos 35° – cos 75°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =