Advertisements
Advertisements
Question
Prove that sin(π + θ) = − sin θ.
Solution
L.H.S = sin(π + θ)
= sin π cos θ + cos π sin θ
= (0) cos θ + (– 1) sin θ
= – sin θ
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find the values of `sin (-(11pi)/3)`
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =