Advertisements
Advertisements
Question
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Solution
sin (45° + θ) – sin (45° – θ) = `sqrt(2) sin θ`
sin(45° + θ) – sin(45° – θ) = (sin 45° cos θ + cos 45° sin θ) – (sin 45° cos θ + cos 45° sin θ)
= sin 45° cos θ + cos 45° sin θ – sin 45° cos θ + cos 45° sin θ
= 2 cos 45° sin θ
= `2 xx 1/sqrt(2) sin theta`
= `2/sqrt(2) xx sqrt(2)/sqrt(2) xx sin theta`
sin(45° + θ) – sin(45° – θ) = `(2sqrt(2))/2 sin theta`
= `sqrt(2) sin theta`
APPEARS IN
RELATED QUESTIONS
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
sin 5θ sin 4θ
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =