Advertisements
Advertisements
Question
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Solution
We know that cos2θ + sin2θ = 1
`cos^2theta + (- 2/3)^2` = 1
`cos^2theta + 4/9` = 1
cos2θ = `1 - 4/9`
cos2θ = `(9 - 4)/9 = 5/9`
cos θ = `+- sqrt(5)/3`
Since θ lies in the fourth quadrant cos θ is positive.
cos θ = `sqrt(5)/3`
sin θ = `- 2/3`, cosec θ = `1/sintheta = - 3/2`
cos θ = `sqrt(5)/3`, sec θ = `1/costheta = 3/sqrt(5)`
tan θ = `sintheta/costheta = (-2/3)/(sqrt(5)/3) = - 2/sqrt(5)`
cot θ = `1/tantheta = - sqrt(5)/2`
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
Find the values of cos(300°)
Find the values of tan(1050°)
Find the values of `tan ((19pi)/3)`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a sum or difference
sin 5θ sin 4θ
Express the following as a product
sin 50° + sin 40°
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =