Advertisements
Advertisements
Question
Find the values of `tan ((19pi)/3)`
Solution
`tan ((19pi)/3) = tan 19/3 xx 180`
= `tan 19/3 xx 360/2`
= `tan 19/6 (360^circ)`
= `tan 3 1/6 (360^circ)`
= `tan[3(360)^circ + 360^circ/6]`
= tan 60°
= `sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Find the values of cos(300°)
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of cos 105°.
Find the value of sin 105°
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(n + 1) θ sin(n – 1) θ + cos(n + 1) θ cos(n – 1)θ = cos 2θ, n ∈ Z
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =