Advertisements
Advertisements
Question
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
Solution
L.H.S = `(cos("A" + 15^circ))/(sin("A" + 15^circ)) - (sin("A" - 15^circ))/(cos("A" - 15^circ))`
= `(cos("A" + 15^circ)cos("A" - 15^circ) - sin("A" + 15^circ)sin("A" - 15^circ))/(sin("A" + 15^circ) cos("A" - 15^circ))`
= `(cos("A" + 15^circ + "A" - 15^circ))/(1/2[sin("A" + 15^circ + "A" - 15^circ) + sin("A" + 15^circ - "A" + 15^circ)]`
= `(2cos2"A")/(sin2"A" + sin30^circ)`
= `(2cos2"A")/(1/2 + sin2"A")`
= `(4cos2"A")/(1 + 2sin 2"A")`
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of tan `(7pi)/12`
Prove that sin 105° + cos 105° = cos 45°
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
sin 75° sin 35°
Express the following as a product
cos 65° + cos 15°
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to