Advertisements
Advertisements
Question
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
Solution
(cos A + cos B) − cos C = `2 cos ("A" + "B")/2 cos ("A" - "B")/2- [1 - 2 sin^2 "C"/2]`
Hint: `[cos ("A" + "B")/2 = sin "C"/2]`
= `2sin "C"/2 cos ("A" - "B")/2 - 1 + 2sin^2 "C"/2`
= `- 1 + 2sin "C"/2[cos ("A" - "B")/2 + sin "C"/2]`
= `- 1 + 2 sin "C"/2[cos ("A" - "B")/2 + cos ("A" + "B")/2]`
= `- 1 + 2sin "C"/2[2cos (2"A")/4 + cos (2"B")/4]`
= `- 1 + 2sin "C"/2[2cos "A"/2 cos "B"/2]`
= `- 1 + 4 cos "A"/2 cos "B"/2 sin "C"/2`
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of `sin (-(11pi)/3)`
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find the value of cos 105°.
Prove that cos(π + θ) = − cos θ
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that sin 105° + cos 105° = cos 45°
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is