English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

If A + B + C = 180°, prove that cos A + cos B − cos C = ABC-1+4cos A2cos B2sin C2 - Mathematics

Advertisements
Advertisements

Question

If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos  "A"/2 cos  "B"/2 sin  "C"/2`

Sum

Solution

(cos A + cos B) − cos C = `2 cos ("A" + "B")/2 cos ("A" - "B")/2- [1 - 2 sin^2  "C"/2]`

Hint: `[cos  ("A" + "B")/2 = sin  "C"/2]` 

= `2sin  "C"/2 cos  ("A" - "B")/2 - 1 + 2sin^2  "C"/2`

= `- 1 + 2sin  "C"/2[cos  ("A" - "B")/2 + sin  "C"/2]`

= `- 1 + 2 sin "C"/2[cos  ("A" - "B")/2 + cos  ("A" + "B")/2]`

= `- 1 + 2sin  "C"/2[2cos  (2"A")/4 + cos  (2"B")/4]`

= `- 1 + 2sin  "C"/2[2cos  "A"/2 cos  "B"/2]`

= `- 1 + 4 cos  "A"/2  cos  "B"/2  sin  "C"/2`

= R.H.S

shaalaa.com
Trigonometric Functions and Their Properties
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.7 [Page 124]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.7 | Q 1. (ii) | Page 124

RELATED QUESTIONS

Find the values of `sin (-(11pi)/3)`


Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`


Show that `sin^2  pi/18 + sin^2  pi/9 + sin^2  (7pi)/18 + sin^2  (4pi)/9` = 2


If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)


If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)


Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2`  and sin y = `- 24/25` with `pi < y < (3pi)/2`


Find the value of cos 105°.


Prove that cos(π + θ) = − cos θ


Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`


If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y


Prove that sin 105° + cos 105° = cos 45°


If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)


Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`


If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`


Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`


Show that sin 12° sin 48° sin 54° = `1/8`


Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`


Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to


Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×