Advertisements
Advertisements
Question
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Solution
tan x = `"n"/("n" + 1)`, tan y = `1/(2"n" + 1)`
tan(x + y) = `(tanx + tany)/(1 - tanx tany)`
= `("n"/("n" + 1) + 1/(2"n" + 1))/(1 - "n"/("n" + 1) * 1/(2"n" + 1))`
= `(("n"(2"n" + 1) + "n" + 1)/(("n" + 1)(2"n" + 1)))/((("n" + 1)(2"n" + 1) - "n")/(("n" + 1)(2"n" + 1))`
= `("n"(2"n" + 1) + "n" + 1)/(("n" + 1)(2"n" + 1) - "n")`
= `(2"n"^2 + "n" + "n" + 1)/(2"n"^2 + "n" + 2"n" + 1 - "n")`
= `(2"n"^2 + 2"n" + 1)/(2"n"^2 + 2"n" + 1)`
tan(x + y) = 1
APPEARS IN
RELATED QUESTIONS
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find the value of sin 105°
Prove that cos(π + θ) = − cos θ
Prove that sin(π + θ) = − sin θ.
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Express the following as a sum or difference
2 sin 10θ cos 2θ
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is