Advertisements
Advertisements
Question
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Solution
We know that sec2θ – tan2θ = 1
sec2θ – (– 2)2 = 1
sec2θ – 4 = 1
sec2θ = 1 + 4 = 5
sec θ = `+- sqrt(5)`
Since θ lies in the second quadrant sec θ is negative.
∴ sec θ = `- sqrt(5)`
cos θ = `1/sectheta = -1/sqrt(5)`
We know cos2θ + sin2θ = 1
`(- 1/sqrt(5))^2 + sin^2theta` = 1
`1/5 + sin^2theta` = 1
sin2θ = `1 - 1/5 = (5 - 1)/5`
sin2θ = `4/5`
sin θ = `+- 2/sqrt(5)`
Since θ lies in the second quadrant sin θ is positivee.
∴ sin θ = `2/sqrt(5)`
sin θ = `2/sqrt(5)`, cosec = `1/sintheta = sqrt(5)/2`
cos θ = `- 1/sqrt(5)`, sec θ = `1/costheta = - sqrt(5)`
tan θ = – 2, cot θ = `1/tantheta = - 1/2`
APPEARS IN
RELATED QUESTIONS
Find the values of `tan ((19pi)/3)`
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
Find the value of tan `(7pi)/12`
Find a quadratic equation whose roots are sin 15° and cos 15°
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Express the following as a sum or difference
sin 5θ sin 4θ
Express the following as a product
sin 75° sin 35°
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that cos(30° – A) cos(30° + A) + cos(45° – A) cos(45° + A) = `cos 2"A" + 1/4`
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is