Advertisements
Advertisements
Question
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Solution
Let x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` = k (say)
`"k"/x` = cos θ
`"k"/y = cos (theta + (2pi)/3)`
`"k"/z = cos (theta + (4pi)/3)`
`"k"/x + "k"/y + "k"/z = cos theta + cos(theta + (2pi)/3) + cos(theta + (4pi)/3)`
`"k"/x + "k"/y + "k"/z` = 0
`"k"[(yz + xz + xy)/(xyz)]` = 0
⇒ xy + yz + zx = 0
APPEARS IN
RELATED QUESTIONS
Find the values of sin (– 1110°)
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find the value of tan `(7pi)/12`
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
sin 5θ sin 4θ
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =