Advertisements
Advertisements
Question
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
Solution
Given A + B + C = 180°
⇒ `("A" + "" + "C")/2` = 90°
So `tan(("A" + "B")/2) = tan(90^circ - "C"/2) = cot "C"/2`
(i.e) `(tan "A"/2 + tan "B"/2)/(1 - tan "A"/2 tan "B"/2) = cot "C"/2 = 1/(tan "C"/2)`
⇒ `(tan "A"/2 + tan "B"/2)tan "C"/2 = 1 - tan "A"/2 tan "B"/2`
(i.e) `tan "A"/2 tan "C"/2 + tan "B"/2 tan "C"/2 = 1 - tan "A"/2 tan "B"/2`
(i.e) `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
APPEARS IN
RELATED QUESTIONS
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If cos(α – β) + cos(β – γ) + cos(γ – α) = `- 3/2`, then prove that cos α + cos β + cos γ = sin α + sin β + sin γ = 0
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
Prove that `tan (pi/4 + theta) - tan(pi/4 - theta)` = 2 tan 2θ
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Express the following as a product
cos 35° – cos 75°
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =