Advertisements
Advertisements
Question
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Solution
`32sqrt(3)[sin pi/48 xx cos pi/48] = 16sqrt(3)[2sin pi/48 cos pi/48]`
= `16sqrt(3) sin pi/24((2pi)/48 = pi/24)`
Now `16sqrt(3)[sin pi/24 xx cos pi/24]`
= `8sqrt(3)[2 sin pi/24 cos pi/24]`
= `8sqrt(3)[sin (2pi)/24]`
= `8sqrt(3) sin pi/12`
Now `8sqrt(3)[sin pi/12 cos pi/12]`
= `4sqrt(3)[2 sin pi/12 cos pi/12]`
= `4sqrt(3)[sin (2pi)/12]`
= `4sqrt(3)(sin pi/6)`
Now `4sqrt(3) sin pi/6 cos pi/6 = 2sqrt(3)[2sin pi/6 cos pi/6]`
`2sqrt(3)[sin (2pi)/6] = 2sqrt(3) sin pi/3`
= `2sqrt(3) xx sqrt(3)/2`
= 3
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of cot(660°)
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that sin 75° – sin 15° = cos 105° + cos 15°
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
2 sin 10θ cos 2θ
Express the following as a sum or difference
sin 5θ sin 4θ
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sin2 B + sin2 C = 1
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is