Advertisements
Advertisements
Question
Express the following as a sum or difference
cos 5θ cos 2θ
Solution
cos 5θ cos 2θ
We know
cosA cosB = `1/2`[cos(A + B) + cos(A – B)]
Take A = 5θ, B = 2θ
cos 5θ . cos 2θ = `1/2`[cos(5θ + 2θ) + cos(5θ – 2θ)]
cos 5θ . cos 2θ = `1/2`[cos 7θ + cos 3θ]
APPEARS IN
RELATED QUESTIONS
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Show that tan 75° + cot 75° = 4
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Prove that (1 + sec 2θ)(1 + sec 4θ) ... (1 + sec 2nθ) = tan 2nθ
Express the following as a sum or difference
2 sin 10θ cos 2θ
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Show that cot(A + 15°) – tan(A – 15°) = `(4cos2"A")/(1 + 2 sin2"A")`
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =
Choose the correct alternative:
`(sin("A" - "B"))/(cos"A" cos"B") + (sin("B" - "C"))/(cos"B" cos"C") + (sin("C" - "A"))/(cos"C" cos"A")` is