English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

If sin x = 1517 and cos y = 1213,0<x<π2,0<y<π2 find the value of sin(x + y) - Mathematics

Advertisements
Advertisements

Question

If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)

Sum

Solution

Given sin x = `15/17, 0 < x < pi/2`

We have cos2x + sin2x = 1

∴ cos2x = 1 – sin2x

= `1 - (15/17)^2`

= `1 - 225/289`

cos2x = `(289 - 225)/289 = 64/289`

cos x = `+-  sqrt(64/289)`

= `+-  8/17`

Given that `0 < x < pi/2`, that is x lies in the first quadrant

∴ cos x is positive.

cos x = `8/17`

Also given cos y = `12/13, 0 < x < pi/2`

We have cos2y + sin2y = 1

sin2y = 1 – cos2y

sin2y = `1 - (12/13)^2 = 1 - 14/169`

sin2y = `(169 - 144)/169 = 25/169`

sin y = `+-  sqrt(25/169) = +-  5/13`

Since `0 < y < pi/2, y lies in the first quadrant sin y is positive.

∴ sin y = `5/13`

sin x = `15/17`

sin y = `5/13`

cos x = `8/17`

cos y = `12/13`

sin(x + y) = sin x cos y + cos x sin y

= `15/17 * 12/13 + 8/17 * 5/13`

sin(x + y) = `180/221 + 40/221`

= `220/221`

shaalaa.com
Trigonometric Functions and Their Properties
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.4 [Page 109]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.4 | Q 1. (i) | Page 109

RELATED QUESTIONS

Find the value of the trigonometric functions for the following:
cos θ = `- 2/3`, θ lies in the IV quadrant


Show that `sin^2  pi/18 + sin^2  pi/9 + sin^2  (7pi)/18 + sin^2  (4pi)/9` = 2


If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)


If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)


Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`


Prove that sin 75° – sin 15° = cos 105° + cos 15°


Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A


Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B


Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`


Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`


Express the following as a product
sin 75° sin 35°


Show that sin 12° sin 48° sin 54° = `1/8`


Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1


Prove that `sin  theta/2 sin  (7theta)/2 + sin  (3theta)/2 sin  (11theta)/2` =  sin 2θ sin 5θ


Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x  cos 7x)` = tan 4x


If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C


If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that sinB + sinC = 1


Choose the correct alternative:
`(1 + cos  pi/8) (1 + cos  (3pi)/8) (1 + cos  (5pi)/8) (1 + cos  (7pi)/8)` =


Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×