Advertisements
Advertisements
Question
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Solution
sec β = ` 5/3`
sec2β – tan2β = 1
sec2β – 1 = tan2β
tan2β = `(- 5/3)^2 - 1`
= `25/9 - 1`
tan2β = `(25 - 9)/9`
= `16/9`
tan β = `+- 4/3`
Given that β lies in the second quadant.
tan β is negative.
∴ tan β = `- 4/3`
tan(α + β) = `(tan alpha + tan beta)/(1 - tan alpha tan beta)`
= `(2 - 4/3)/(1 - 2 xx (- 4/3))`
= `((6 - 4)/3)/(1 + 8/3)`
= `((6 - 4)/3)/((3 + 8)/3)`
tan(α + β) = `2/11`
APPEARS IN
RELATED QUESTIONS
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Find cos(x − y), given that cos x = `- 4/5` with `pi < x < (3pi)/2` and sin y = `- 24/25` with `pi < y < (3pi)/2`
Find the value of sin 105°
Prove that sin(π + θ) = − sin θ.
Find a quadratic equation whose roots are sin 15° and cos 15°
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that sin 105° + cos 105° = cos 45°
If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`. find the value of xy + yz + zx
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B