Advertisements
Advertisements
प्रश्न
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
उत्तर
Given sin x = `15/17, 0 < x < pi/2`
We have cos2x + sin2x = 1
∴ cos2x = 1 – sin2x
= `1 - (15/17)^2`
= `1 - 225/289`
cos2x = `(289 - 225)/289 = 64/289`
cos x = `+- sqrt(64/289)`
= `+- 8/17`
Given that `0 < x < pi/2`, that is x lies in the first quadrant
∴ cos x is positive.
cos x = `8/17`
Also given cos y = `12/13, 0 < x < pi/2`
We have cos2y + sin2y = 1
sin2y = 1 – cos2y
sin2y = `1 - (12/13)^2 = 1 - 14/169`
sin2y = `(169 - 144)/169 = 25/169`
sin y = `+- sqrt(25/169) = +- 5/13`
Since `0 < y < pi/2, y lies in the first quadrant sin y is positive.
∴ sin y = `5/13`
sin x = `15/17`
sin y = `5/13`
cos x = `8/17`
cos y = `12/13`
sin(x + y) = sin x cos y + cos x sin y
= `15/17 * 12/13 + 8/17 * 5/13`
sin(x + y) = `180/221 + 40/221`
= `220/221`
APPEARS IN
संबंधित प्रश्न
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
Find the value of sin 105°
Prove that sin(π + θ) = − sin θ.
Prove that sin 105° + cos 105° = cos 45°
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Express the following as a product
cos 65° + cos 15°
Express the following as a product
cos 35° – cos 75°
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =