Advertisements
Advertisements
प्रश्न
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
उत्तर
`tan(pi/4 + theta) = (tan pi/4 + tan theta)/(1 - tan pi/4 * tan theta)`
`tan(pi/4 + theta) = (1 + tan theta)/(1 - tan theta)` .....(1)
`tan ((3pi)/4 +theta) = (tan (3pi)/4 + tan theta)/(1 - tan (3pi)/4 * tan theta)`
= `(tan(pi - pi/4) tan theta)/(1 - tan(pi - pi/4) tan theta)`
= `(- tan pi/4 + tan theta)/(1 + tan pi/4 * tan theta)`
`tan((3pi)/4 + theta) = (-1 + tan theta)/(1 + tan theta)` .....(2)
From equation (1) and (2) we have
`tan(pi/4 + theta) * tan((3pi)/4 + theta)`
= `(1 + tan theta)/(1 - tan theta) xx (-(1 - tan theta))/(1 + tan theta)`
= – 1
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of sin (– 1110°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 5θ sin 4θ
Express the following as a product
sin 75° sin 35°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
If A + B + C = 2s, then prove that sin(s – A) sin(s – B)+ sin s sin(s – C) = sin A sin B
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
`1/(cos 80^circ) - sqrt(3)/(sin 80^circ)` =