Advertisements
Advertisements
प्रश्न
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
उत्तर
tan x = `"n"/("n" + 1)`, tan y = `1/(2"n" + 1)`
tan(x + y) = `(tanx + tany)/(1 - tanx tany)`
= `("n"/("n" + 1) + 1/(2"n" + 1))/(1 - "n"/("n" + 1) * 1/(2"n" + 1))`
= `(("n"(2"n" + 1) + "n" + 1)/(("n" + 1)(2"n" + 1)))/((("n" + 1)(2"n" + 1) - "n")/(("n" + 1)(2"n" + 1))`
= `("n"(2"n" + 1) + "n" + 1)/(("n" + 1)(2"n" + 1) - "n")`
= `(2"n"^2 + "n" + "n" + 1)/(2"n"^2 + "n" + 2"n" + 1 - "n")`
= `(2"n"^2 + 2"n" + 1)/(2"n"^2 + 2"n" + 1)`
tan(x + y) = 1
APPEARS IN
संबंधित प्रश्न
Find the values of cot(660°)
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
If sin A = `3/5` and cos B = `9/41 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of sin(A + B)
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of sin 105°
Prove that cos(π + θ) = − cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Express the following as a product
cos 35° – cos 75°
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C