Advertisements
Advertisements
प्रश्न
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
उत्तर
Given sin x = `15/17, 0 < x < pi/2`
We have cos2x + sin2x = 1
∴ cos2x = 1 – sin2x
= `1 - (15/17)^2`
= `1 - 225/289`
cos2x = `(289 - 225)/289 = 64/289`
cos x = `+- sqrt(64/289)`
= `+- 8/17`
Given that `0 < x < pi/2`, that is x lies in the first quadrant
∴ cos x is positive.
cos x = `8/17`
Also given cos y = `12/13, 0 < x < pi/2`
We have cos2y + sin2y = 1
sin2y = 1 – cos2y
sin2y = `1 - (12/13)^2 = 1 - 14/169`
sin2y = `(169 - 144)/169 = 25/169`
sin y = `+- sqrt(25/169) = +- 5/13`
Since `0 < y < pi/2, y lies in the first quadrant sin y is positive.
∴ sin y = `5/13`
sin x = `15/17`
sin y = `5/13`
cos x = `8/17`
cos y = `12/13`
cos(x – y) = cos x cos y + sin x sin y
= `8/17*12/13 + 15/17*5/13`
cos(x – y) = `96/221 + 75/221`
= `171/221`
APPEARS IN
संबंधित प्रश्न
Find the values of sin (– 1110°)
Find the values of `sin (-(11pi)/3)`
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
If a cos(x + y) = b cos(x − y), show that (a + b) tan x = (a − b) cot y
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =