Advertisements
Advertisements
प्रश्न
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
उत्तर
we know sin2A + cos2A = 1
cos2 A = 1 – sin2A
= `1 - (4/5)^2`
= `1 - 16/25`
= `(25 - 16)/25`
= `9/25`
cos A = `+- sqrt(9/25)`
= `+- 3/5`
Since A lies in the first quadrant, cos A is positive
∴ cos A = `3/5`
cos 2A = cos2A – sin2A
= `(3/5)^2 - (4/5)^2`
= `9/25 - 16/25`
= `(9 - 16)/25`
= `(-7)/25`
APPEARS IN
संबंधित प्रश्न
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Find the value of tan `(7pi)/12`
Prove that sin(π + θ) = − sin θ.
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 5θ sin 4θ
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If A + B + C = `pi/2`, prove the following sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C