Advertisements
Advertisements
प्रश्न
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
उत्तर
L.H.S = cos2 A + cos2 B – 2 cos A cos B [cos A cos B – sin A sin B]
= cos2 A + cos2 B – 2 cos2 A cos2 B + 2 sin A cos A sin B cos B
= (cos2 A – cos2 A cos2 B) + (cos2 B – cos2 A cos2 B) + 2 sin A cos A sin B cos B
= cos2A(1 – cos2 B) + cos2B(1 – cos2 A) + 2 sin A cos A sin B cos B
= cos2A sin2B + cos2B sin2A + 2 sin A cos B sin B cos A
= (sin A cos B + cos A sin B)2
= sin2 (A + B)
= R.H.S
APPEARS IN
संबंधित प्रश्न
Find the values of sin(480°)
Find the values of `sin (-(11pi)/3)`
Find the value of the trigonometric functions for the following:
cos θ = `- 1/2`, θ lies in the III quadrant
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin(A + B) sin(A – B) = sin2A – sin2B
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
If θ + Φ = α and tan θ = k tan Φ, then prove that sin(θ – Φ) = `("k" - 1)/("k" + 1)` sin α
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
Express the following as a product
sin 75° sin 35°
Express the following as a product
cos 65° + cos 15°
Show that sin 12° sin 48° sin 54° = `1/8`
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`