Advertisements
Advertisements
Question
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Solution
L.H.S = cos2 A + cos2 B – 2 cos A cos B [cos A cos B – sin A sin B]
= cos2 A + cos2 B – 2 cos2 A cos2 B + 2 sin A cos A sin B cos B
= (cos2 A – cos2 A cos2 B) + (cos2 B – cos2 A cos2 B) + 2 sin A cos A sin B cos B
= cos2A(1 – cos2 B) + cos2B(1 – cos2 A) + 2 sin A cos A sin B cos B
= cos2A sin2B + cos2B sin2A + 2 sin A cos B sin B cos A
= (sin A cos B + cos A sin B)2
= sin2 (A + B)
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of `tan ((19pi)/3)`
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
Find the value of the trigonometric functions for the following:
sec θ = `13/5`, θ lies in the IV quadrant
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Show that `sin^2 pi/18 + sin^2 pi/9 + sin^2 (7pi)/18 + sin^2 (4pi)/9` = 2
Prove that cos(30° + x) = `(sqrt(3) cos x - sin x)/2`
Prove that cos(π + θ) = − cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Show that sin 12° sin 48° sin 54° = `1/8`
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x)
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin2A + sin2B − sin2C = 2 sin A sin B cos C
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to