Advertisements
Advertisements
प्रश्न
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
उत्तर
sin2θ = `3/4`
⇒ sin θ = `+- sqrt(3)/2`
sin 60° = `sqrt(3)/2`
sin 120° = sin(180° – 60°)
= sin 60°
= `sqrt(3)/2`
∴ θ = 60° and 120°
APPEARS IN
संबंधित प्रश्न
If sin A = `3/5` and cos B = `9/41, 0 < "A" < pi/2, 0 < "B" < pi/2`, find the value of cos(A – B)
Find the value of sin 105°
Find a quadratic equation whose roots are sin 15° and cos 15°
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Prove that cos(A + B) cos C – cos(B + C) cos A = sin B sin(C – A)
Prove that cos(A + B) cos(A – B) = cos2A – sin2B = cos2B – sin2A
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If θ is an acute angle, then find `sin (pi/4 - theta/2)`, when sin θ = `1/25`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that sin 4α = `4 tan alpha (1 - tan^2alpha)/(1 + tan^2 alpha)^2`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Show that `(sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x)` = tan 2x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that sin A + sin B + sin C = `4 cos "A"/2 cos "B"/2 cos "C"/2`
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to