Advertisements
Advertisements
प्रश्न
Find the value of the trigonometric functions for the following:
tan θ = −2, θ lies in the II quadrant
उत्तर
We know that sec2θ – tan2θ = 1
sec2θ – (– 2)2 = 1
sec2θ – 4 = 1
sec2θ = 1 + 4 = 5
sec θ = `+- sqrt(5)`
Since θ lies in the second quadrant sec θ is negative.
∴ sec θ = `- sqrt(5)`
cos θ = `1/sectheta = -1/sqrt(5)`
We know cos2θ + sin2θ = 1
`(- 1/sqrt(5))^2 + sin^2theta` = 1
`1/5 + sin^2theta` = 1
sin2θ = `1 - 1/5 = (5 - 1)/5`
sin2θ = `4/5`
sin θ = `+- 2/sqrt(5)`
Since θ lies in the second quadrant sin θ is positivee.
∴ sin θ = `2/sqrt(5)`
sin θ = `2/sqrt(5)`, cosec = `1/sintheta = sqrt(5)/2`
cos θ = `- 1/sqrt(5)`, sec θ = `1/costheta = - sqrt(5)`
tan θ = – 2, cot θ = `1/tantheta = - 1/2`
APPEARS IN
संबंधित प्रश्न
Find the values of sin (– 1110°)
Find the value of tan `(7pi)/12`
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a product
sin 75° sin 35°
Show that `cos pi/15 cos (2pi)/15 cos (3pi)/15 cos (4pi)/15 cos (5pi)/15 cos (6pi)/15 cos (7pi)/15 = 1/128`
Prove that `(sin(4"A" - 2"B") + sin(4"B" - 2"A"))/(cos(4"A" - 2"B") + cos(4"B" - 2"A"))` = tan(A + B)
If A + B + C = 180◦, prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = `pi/2`, prove the following cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B sin C
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to