Advertisements
Advertisements
Question
Express the following as a product
cos 35° – cos 75°
Solution
We know sin C + sin D = `2 sin ("C" + "D")/2 * sin ("D" - "C")/2`
Take C = 35°, D = 75°
cos 35° – cos 75° = `2sin((35^circ + 75^circ)/2) * sin((75^circ - 35^circ)/2)`
cos 35° – cos 75° = `2sin(110^circ/2) * sin(40^circ/2)`
cos 35° – cos 75° = 2 sin 55° sin 20°
APPEARS IN
RELATED QUESTIONS
Find the values of `tan ((19pi)/3)`
`(5/7, (2sqrt(6))/7)` is a point on the terminal side of an angle θ in standard position. Determine the six trigonometric function values of angle θ
Prove that `(cot(180^circ + theta) sin(90^circ - theta) cos(- theta))/(sin(270^circ + theta) tan(- theta) "cosec"(360^circ + theta))` = cos2θ cotθ
Prove that cos(π + θ) = − cos θ
Find a quadratic equation whose roots are sin 15° and cos 15°
Prove that sin 105° + cos 105° = cos 45°
Show that tan 75° + cot 75° = 4
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
If θ is an acute angle, then find `cos (pi/4 + theta/2)`, when sin θ = `8/9`
If cos θ = `1/2 ("a" + 1/"a")`, show that cos 3θ = `1/2 ("a"^3 + 1/"a"^3)`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a product
cos 65° + cos 15°
Express the following as a product
sin 50° + sin 40°
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
If x + y + z = xyz, then prove that `(2x)/(1 - x^2) + (2y)/(1 - y^2) + (2z)/(1 - z^2) = (2x)/(1 - x^2) (2y)/(1 - y^2) (2z)/(1 - z^2)`
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to