English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C - Mathematics

Advertisements
Advertisements

Question

If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C

Sum

Solution

L.H.S = `(1 - cos2"A")/2 + (1 - cos2"B")/2 + (1 - cos 2"C")/2`

Hint: `[sin^2"A" = (1 - cos2"A")/2]`

= `3/2 - 1/2[cos2"A" + cos2"B" + cos2"C"]`

= `3/2 - 1/2 [2cos("A" + "B") cos("A" - "B") + 2cos^2"C" - 1]`

= `3/2 - cos("A" + "B") cos("A" - "B") - cos^2"C" + 1/2`

= 2 + cos C cos(A – B) – cos2

= 2 + cosC[cos(A – B)(cos(A + B)]

[cos(180° – C) – cos C – cos C]

= 2 + cos C [cos(A – B) + cos(A + B)]

= 2+ cos C[2 cos A cos B]

= 2 + 2 cos A cos B cos C

= R.H.S

shaalaa.com
Trigonometric Functions and Their Properties
  Is there an error in this question or solution?
Chapter 3: Trigonometry - Exercise 3.7 [Page 124]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 3 Trigonometry
Exercise 3.7 | Q 1. (iii) | Page 124
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×