Advertisements
Advertisements
Question
If A + B + C = 180°, prove that sin2A + sin2B + sin2C = 2 + 2 cos A cos B cos C
Solution
L.H.S = `(1 - cos2"A")/2 + (1 - cos2"B")/2 + (1 - cos 2"C")/2`
Hint: `[sin^2"A" = (1 - cos2"A")/2]`
= `3/2 - 1/2[cos2"A" + cos2"B" + cos2"C"]`
= `3/2 - 1/2 [2cos("A" + "B") cos("A" - "B") + 2cos^2"C" - 1]`
= `3/2 - cos("A" + "B") cos("A" - "B") - cos^2"C" + 1/2`
= 2 + cos C cos(A – B) – cos2
= 2 + cosC[cos(A – B)(cos(A + B)]
[cos(180° – C) – cos C – cos C]
= 2 + cos C [cos(A – B) + cos(A + B)]
= 2+ cos C[2 cos A cos B]
= 2 + 2 cos A cos B cos C
= R.H.S
APPEARS IN
RELATED QUESTIONS
Find the values of cot(660°)
Find the values of `sin (-(11pi)/3)`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of tan(x + y)
Find sin(x – y), given that sin x = `8/17` with 0 < x < `pi/2`, and cos y = `- 24/25`, x < y < `(3pi)/2`
Prove that cos(π + θ) = − cos θ
Prove that sin(45° + θ) – sin(45° – θ) = `sqrt(2) sin θ`
Prove that sin2(A + B) – sin2(A – B) = sin2A sin2B
Show that cos2 A + cos2 B – 2 cos A cos B cos(A + B) = sin2(A + B)
If tan x = `"n"/("n" + 1)` and tan y = `1/(2"n" + 1)`, find tan(x + y)
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of cos 2A, A lies in the first quadrant, when tan A `16/63`
Prove that `32(sqrt(3)) sin pi/48 cos pi/48 cos pi/24 cos pi/12 cos pi/6` = 3
Express the following as a sum or difference
sin 35° cos 28°
Express the following as a sum or difference
sin 4x cos 2x
Express the following as a sum or difference
cos 5θ cos 2θ
Express the following as a product
cos 65° + cos 15°
Prove that 1 + cos 2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x
If A + B + C = 180°, prove that `tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2 tan "A"/2` = 1
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos2 B + cos2 C = 1
Choose the correct alternative:
If cos 28° + sin 28° = k3, then cos 17° is equal to