Advertisements
Advertisements
Question
Find the value of the trigonometric functions for the following:
cos θ = `2/3`, θ lies in the I quadrant
Solution
We know that cos2θ + sin2θ = 1
`(2/3)^2 + sin^2theta` = 1
`4/9 + sin^2theta` = 1
sin2θ = `1 - 4/9`
sin2θ = `(9 - 4)/9 = 5/9`
sin θ = `+- sqrt(5)/3`
Since θ lies in the I quadrant all trigonometric functions are positive.
sin θ = `sqrt(5)/3`, cosec θ = `1/sintheta = 3/sqrt(5)`
cos θ = `2/3`, sec θ = `1/costheta = 3/2`
tan θ = `sintheta/costheta = (sqrt(5)/3)/(2/3) = sqrt(5)/2`
cot θ = `costheta/sintheta = (2/3)/(sqrt(5)/3) = 2/sqrt(5)`
APPEARS IN
RELATED QUESTIONS
Find the values of `tan ((19pi)/3)`
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Prove that sin(π + θ) = − sin θ.
Prove that sin 105° + cos 105° = cos 45°
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Show that tan(45° + A) = `(1 + tan"A")/(1 - tan"A")`
Show that tan(45° − A) = `(1 - tan "A")/(1 + tan "A")`
Prove that `tan(pi/4 + theta) tan((3pi)/4 + theta)` = – 1
Find the value of tan(α + β), given that cot α = `1/2`, α ∈ `(pi, (3pi)/2)` and sec β = `- 5/3` β ∈ `(pi/2, pi)`
Find the value of cos 2A, A lies in the first quadrant, when cos A = `15/17`
Prove that cos 5θ = 16 cos5θ – 20 cos3θ + 5 cos θ
Prove that (1 + tan 1°)(1 + tan 2°)(1 + tan 3°) ..... (1 + tan 44°) is a multiple of 4
Express the following as a sum or difference
sin 5θ sin 4θ
Express the following as a product
cos 35° – cos 75°
Show that `((cos theta -cos 3theta)(sin 8theta + sin 2theta))/((sin 5theta - sin theta) (cos 4theta - cos 6theta))` = 1
Choose the correct alternative:
`(1 + cos pi/8) (1 + cos (3pi)/8) (1 + cos (5pi)/8) (1 + cos (7pi)/8)` =
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to
Choose the correct alternative:
Let fk(x) = `1/"k" [sin^"k" x + cos^"k" x]` where x ∈ R and k ≥ 1. Then f4(x) − f6(x) =