Advertisements
Advertisements
Question
Choose the correct alternative:
cos 1° + cos 2° + cos 3° + ... + cos 179° =
Options
0
1
−1
89
Solution
0
APPEARS IN
RELATED QUESTIONS
Find the values of tan(1050°)
Find the values of `sin (-(11pi)/3)`
Find all the angles between 0° and 360° which satisfy the equation sin2θ = `3/4`
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2` find the value of sin(x + y)
If sin x = `15/17` and cos y = `12/13, 0 < x < pi/2, 0 < y < pi/2`, find the value of cos(x − y)
Expand cos(A + B + C). Hence prove that cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B, if A + B + C = `pi/2`
Prove that sin(30° + θ) + cos(60° + θ) = cos θ
Show that tan 75° + cot 75° = 4
Prove that cos 8θ cos 2θ = cos25θ – sin23θ
Prove that cot(A + B) = `(cot "A" cot "B" - 1)/(cot "A" + cot "B")`
Find the value of cos 2A, A lies in the first quadrant, when sin A = `4/5`
If A + B = 45°, show that (1 + tan A)(1 + tan B) = 2
Show that `cot(7 1^circ/2) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6)`
Express the following as a product
cos 35° – cos 75°
Prove that `(sin 4x + sin 2x)/(cos 4x + cos 2x)` = tan 3x
Prove that `(sin x + sin 3x + sin 5x + sin 7x)/(cos x + cos x + cos 5x cos 7x)` = tan 4x
If A + B + C = 180°, prove that cos A + cos B − cos C = `- 1 + 4cos "A"/2 cos "B"/2 sin "C"/2`
If A + B + C = 180°, prove that sin(B + C − A) + sin(C + A − B) + sin(A + B − C) = 4 sin A sin B sin C
If ∆ABC is a right triangle and if ∠A = `pi/2` then prove that cos B – cos C = `- 1 + 2sqrt(2) cos "B"/2 sin "C"/2`
Choose the correct alternative:
If `pi < 2theta < (3pi)/2`, then `sqrt(2 + sqrt(2 + 2cos4theta)` equals to